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Abstract. We suggest a simple and useful approach to compute the value of a hydro-
and gas-driven storage facilities. Instead of implementing a common stochastic control
method, we assume that we are already given with an optimal policy. With this at hand we
suggest various payoffs that help a producer to hedge the market position and to compute
its value.
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1. Introduction and literature1

The problem of modelling storage is not new, but still very demanding and challenging2

due to its direct purpose of matching the supply and demand in energy markets. The3

key purposes of controlling a storage process include keeping the balance in the reservoir,4

meeting the changing demand, hedging market positions, insuring against various sudden5

events, performing market speculations and others.6

To meet the seasonal changes in demand both renewable- and fuel-driven production in-7

dustries have storage reservoirs. For example, the hydro-dominated Nordic power market8

(i.e. Norway and Sweden) represents private and public parties operating hydro reservoirs.9

As stated in Kauppi and Liski (2008), this hydro system has some specific features such10

as weather-dependency in spring and fall, many different inflow and outflow technical con-11

straints in hydro turbines and other. Since inflow is highly seasonal and can show some12

instability, there is a strong interconnection between the Scandinavian markets. For in-13

stance, depending on the conditions, the necessary amount of hydro power can safely be14

transported from one region to another. Moreover, there exists a cumulative hydro storage15

index, available at Nord Pool exchange, that shows current hydro reservoir levels across16

countries and in the total maximum capacity. (add some more descriptive issues on17

the hydro storage here).18

Other storage alternatives to have a quick access to are facilities to easily store fuels, mainly19

gas. These facilities have some specific properties and characteristics one should keep in20

mind. Among them are the reservoir capacity constraint and injection and withdrawal21

rate constraints. The latter rate constraint regulates the speed of injection or withdrawal22

depending on the current reservoir level. Other important operating characteristics are the23

base gas (cushion) level that ensures the critical pressure in the pipeline and the working24

gas level which allows one to operate in the market. Also, there is a cyclability constraint25

∗E-mail: anna.nazarova@uni-due.de
1



2

representing a number of cycles of injection or withdrawal per year. Furthermore gas26

storage entails various operational and managerial costs. Additional to these costs there27

are possible pipeline seepage rates which describe the amount of gas that is lost during28

injection or withdrawal. On top of that there might be some regulatory constraints.29

Technically, there exist three types of underground gas storage facilities: salt caverns,30

aquifers and depleted oil or gas reservoirs, see Commission (2004). The first type of fa-31

cility has relatively high deliverability and injection rates and is often used for short-term32

purposes. The second type of facility has high cushion level requirements and a high de-33

liverability rate. The last one is the most common gas storage provision and is used for34

seasonal system supply or for peak-day demands.35

As the reader can see, hydro storage and gas storage problems have some issues in com-36

mon. Particularly, the hydro storage problem addresses the questions of when and how37

much water to release or to save and how much power to produce respectively. The gas38

storage problem addresses the questions of when to withdraw and sell and when to buy39

in the market and inject. While the former problem has not extensively been discussed40

in the literature (other papers to mention here?), the latter problem was under a41

quite focus for the last decade in the literature. Papers of Ahn, Danilova, and Swindle42

(2002), Chen and Forsyth (2007), Kjaer and Ronn (2008), Thompson, Davison, and Ras-43

mussen (2009), Carmona and Ludkovski (2010) investigate the working gas storage value44

problem as a stochastic control problem.45

Namely, they consider the control policy which defines the periods of injection, withdrawal46

or ”doing nothing” in such a way that the total profit of a storage holder is maximised with47

respect to some constraints. More precisely, there is a physical storage at level St which is48

limited up to the maximal storage capacity Smax. The market price of gas Pt can either49

be considered as a futures price F (t, t) with some respective assumptions on F (t, T ) or50

can alternatively be modelled as a stochastic mean-reverting process possibly with jumps.51

There are two considered rates: injection ain(St) > 0 and withdrawal aout(St) < 0, not52

necessarily equal to each other by their absolute value. There are possibly some costs of53

injection/withdrawal together with some other operational and managerial costs of storage.54

Furthermore there is a finite (or infinite) horizon with either continuous (or discrete) time55

setting. All this sets up the following optimisation problem of finding an optimal switching56

policy between injection, withdrawal or ”doing nothing” regimes. This problem belongs to57

a class of stochastic control problems, since one seeks for an optimal strategy c from the58

class Ct of all admissible strategies. Given starting values at time t one has the following59

formulation60

(1) V (t, Pt, St) = sup
c∈Ct

E
[ ∫ T

t

h(cs, Ps, Ss) ds
]
,

where h is a specified payoff that an investor receives at time t implementing the strategy61

c. Depending on the assumptions and modelling properties, this Hamilton-Jacobi-Bellman62

type of problem can be solved with several techniques extensively available in the literature.63

The resulting optimal stochastic control policy explains three regimes: if the working gas64

level in storage is low, then with the gas price increasing one is moving from a strategy of65
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pumping up to ”doing nothing” with gas. Conversely, if the working gas level in the storage66

facility is high, then with the gas price increasing one has an opportunity of releasing gas67

from storage to sell. This control strategy corresponds to the following policy: one sells68

the gas and it results in the highest value when the prices are high and the reservoir is full.69

Respectively, if the prices are high and the reservoir is empty, then one neither sells or buys.70

In this paper we will not focus on solving the stochastic optimal control problem, instead71

we assume that the optimal policy of injection or withdrawal is given and investigate a72

number of important financial products that a producer can use in order to hedge the73

market position.74

2. Motivation75

In a contrast to the approach described above, we look at the problem differently and76

develop a method that allows us to analyse both the gas and hydro storage problems from77

the stochastic modelling and statistical points of view. We consider a working storage (gas78

or hydro) as a mean-reverting bounded stochastic process, implying that the control policy79

to inject or withdraw is already given.80

The motivation for modelling storage level as a random process is the following. Con-81

sider a producer who owns a storage reservoir: she has to regularly decide on injec-82

tion/withdrawal/”doing nothing” action depending on various external factors. When she83

deals with the hydro storage problem, one of the key factors is the power price Pt. More84

precisely, the producer tends to release the water to produce power if the current power85

price level is relatively high and if the current water level in the reservoir allows one to do86

so. Alternatively, if the current price level is low, one can only opt for a base production.87

When the operator deals with the gas storage problem, then one of these factors has been88

considered in the literature as a gas spot price, also Pt.
2 However, since the spot price89

contains information up to time t, we would suggest that this producer looks at the futures90

market and takes a decision respectively. If the market is currently in contango, meaning91

that the value Dt = F (t, T )−EQ[PT | Ft] > 0, then the producer can expect that the mar-92

ket is willing to pay more in the future. The opposite case is the backwardation, meaning93

that the value Dt = F (t, T )−EQ[PT | Ft] < 0, then the producer can expect that the prices94

will be lower in the future. So this would help to either inject during contango or withdraw95

during backwardation. Since one usually observes contango in summer and backwardation96

in winter, we can think of the value Dt as a process which is reverting around zero. This97

would imply that if we follow the strategy to inject when the market is in contango the98

storage level is below some mean level m. If we follow the strategy to withdraw when the99

market is in backwardation the storage level is above the mean level m.100

Since demand is highly seasonal, managing inventories plays a big role in various risk101

hedging methods. A stochastic model for storage which does not include the stochastic102

control component would shed some light on the storage value dynamics and gives an103

intuition to hedging against a price collapse or other unexpected events. Another benefit104

of such a setup is that it gives a quick and simple way to estimate the value of owning a105

storage facility knowing the current market price.106

2Further in the text we refer Pt as a fuel price which can either be power or gas price respectively.
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The paper is structured as follows. Chapter 3 introduces the model with all the necessary107

components for storage dynamics, spot market price dynamics and the value process. For108

the sake of comparison, we also consider several payoffs for hydro and gas storage problems109

respectively. Chapter 4 gives several illustrative examples. Chapter 5 provides a discussion110

and chapter 6 concludes.111

3. Storage Process Modelling112

3.1. Modelling setup. Let (Ω,P,F , {Ft}) be a complete filtered probability space. We113

specify the model assumptions and parameters:114

• continuous time setting;115

• finite time horizon t, T ∈ [T1, T2];116

• St is the current level of working hydro/gas in the reservoir at moment t measured117

in MWh;118

• reservoir capacity is restricted naturally by 0 < l < u < +∞ with l is the minimum119

reservoir level and u the maximum reservoir level;120

• a(St) is the rate at which we inject or withdraw;121

• Pt is the spot price (gas or power);122

• F (t, T ) is the futures price (gas or power) with maturity T ;123

• Vt(St, Pt, Ct) is the storage value at time t;124

• r(t, T ) is the discount factor over the period of (t, T );125

• there are some cumulative (operational, managerial or switching) costs Ct included.126

We model the storage level dynamics St as a stochastic mean-reverting process which stays127

between (l, u) as follows128

(2) dSt = −2(St −m) dt+
√

2(St − l)(u− St) dW S
t ,

where m = u+l
2

is the average reservoir level. An illustrative example of such a process is129

given in Figure 1. This formulation suggests that the injection and withdrawal rates are130

defined by dSt. The drift term becomes positive when the reservoir is relatively empty and131

needs to be re-filled and the drift term becomes negative when the reservoir is relatively full132

and needs to be emptied. The diffusion term ensures the fact that the process St always133

stays inside the interval (l, u) and never reaches the boundaries l and u, which is exactly134

the case for the real storage level process due to regulatory constraints on the minimum135

and maximum reservoir levels l and u.136

In this paper we will focus on the hydro- and gas-driven storage reservoirs. The hydro-137

driven reservoir is naturally filled with melted snow or rain. So the amount of precipitation138

can be regarded as a random process. In (REFERENCE to Stein Erik Fleten paper) the139

authors provide data from Norwegian producers operating hydro storage reservoirs. Their140

data show the random nature of the inflow process. Another important issue discussed141
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in the paper is the so-called target level set by the producer. This target level is time-142

dependent that can be explained by the seasonal behavior of the inflow to the storage143

facility: due to high power demand in winter and low power demand in summer. This144

effect can be captured by incorporating some circular (e.g. trigonometric) function. In our145

model for the sake of tractability and simplicity we refer to this seasonal component as146

constant level m, namely we assume that m := E[m(t)].147
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Figure 1. An example of a storage level process with l = 1 and u = 51.

Need to mention the diffusion in a target zone and papers of de jong and148

sorensen and their application to a currency exchange markets.149

The spot price dynamics is described by an exponential Ornstein-Uhlenbeck process with-150

out jumps which ensures the price positivity (here we ignore the fact that sometimes power151

can exhibit negative prices), namely152

Pt = ef(t)+Xt ,

dXt = −αXt dt+ σ dWX
t ,

dPt = α
(
µ(t)− logPt

)
Pt dt+ σPt dWX

t ,(3)
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where α is the speed of mean-reversion to the mean level f(t) (possibly capturing the153

seasonal component), σ is a constant volatility and µ(t) := 1
α

(σ
2

2
+ f ′t) + f(t).154

We also assume the following correlation structure with155

(4) dWX
t dW S

t = ρ dt.

Then we continue with assuming linear consistency on the correlation structure: if ρ =156

corr(Xt, St) < 0, then ρ̂ = corr
(
(Xt−x)1Xt>x, (St−s)1St>s

)
< 0. To motivate this assump-157

tion, one can think of the following: if the storage facilities are relatively full or increasing158

(e.g., extra precipitation) and market is aware of the lack of a storable asset shortage, then159

the market power price would be relatively low or respectively decreasing.160

Now we can introduce the value process Vt(Pt, St, Ct) as161

(5) Vt(Pt, St, Ct) = E
[ ∫ T

t

e−r(s,t) Hs(Ps, Ss, Cs) ds|Ft
]
,

where Ht(Pt, St, Ct) is a payoff including the various costs Ct and r(t, T ) is a discount162

factor. Simply speaking, we consider a value process as a discounted payoff which is a163

combination of two stochastic processes (power or gas price and storage level). Since we164

know the statistical properties of these two processes, we aim to investigate their product165

process to have some approximation of on the storage value process.166

Before we proceed with the investigation of various payoffs, we need to recall some technical167

properties of the processes Pt and St. It is known fact from the Equation (3) that the168

logarithm of the price Pt is Gaussian. So one can explicitly compute the mean and the169

variance of both logPt and Pt. Regarding the process St, we can characterise it by the170

transition density function pt−t0(x, y). We will use the following notations: ∆ := u − l,171

cn = ∆
2

, vn(x) :=
√

2n+1
2
Pn

(
2
∆

(x − l) − 1
)

with Pn(x) being Legendre’s3 series of order n172

and C(n, x, t) := 2n+1
∆

Pn

(
2
∆

(x− l)− 1
)
e−n(n+1)(t−t0). Then the transition density function173

pt−t0(x, y) derived in REFERENCE is given as174

pt−t0(x, y) |(l,u) =
∞∑
n=0

vn(x)vn(y)

cn
e−n(n+1)(t−t0)

=
∞∑
n=0

2n+ 1

∆
Pn

( 2

∆
(x− l)− 1

)
Pn

( 2

∆
(y − l)− 1

)
e−n(n+1)(t−t0)

=
∞∑
n=0

C(n, x, t)Pn

( 2

∆
(y − l)− 1

)
.(6)

3There is a variety of literature on the Legendre polynomials available, for instance, Whittaker and Watson
(1996) and Bell (2004). The first few polynomials are: P0(x) = 1, P1(x) = x, P2(x) = 3

2x
2 − 1

2 , P3(x) =
5
2x

3 − 3
2x, P4(x) = 35

8 x4 − 30
8 x2 + 3

8 .
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We will also use the following properties of the Legendre series (for the details see Abramowitz175

and Stegun (1970), page 786 and Bell (2004), pages 56-58):176

• if f(z) is a polynomial with a degree less than Pn(z) then177

(7)

∫ 1

−1

f(z)Pn(z) dz = 0;

• for n ≥ 1178

(8)

∫ 1

x

Pn(z) dz =
Pn−1(x)− Pn+1(x)

2n+ 1
,

we denote this quantity as P ∗n−1,n+1(x) for future calculations;179

• for n ≥ 2180

(9)

∫ 1

x

zPn(z) dz =
n(2n+ 3)Pn−2(x)− (2n+ 1)Pn(x)− (n+ 1)(2n− 1)Pn+2(x)

(4n2 − 1)(2n+ 3)
,

we denote this quantity as P ∗n−2,n,n+2(x) for future calculations;181

• for n ≥ 3182

∫ 1

x

z2Pn(z) dz =
n(n− 1)

(4n2 − 1)(2n− 3)
Pn−3(x)− (n+ 1)(n+ 2)

(2n+ 1)(2n+ 3)(2n+ 5)
Pn+3(x)

− n2 + 3n− 1

(4n2 − 1)(2n+ 5)
Pn+1(x) +

n2 − n− 3

(4n2 − 9)(2n+ 1)
Pn−1(x),(10)

we denote this quantity as P ∗n−3,n+3(x) for future calculations;183

• for even n184

(11)

∫ 1

0

z2Pn(z) dz =
(−1)n(n− 1)(3/2)

2(−1)(n+ 5/2)
,

we denote this quantity as P ∗2n for future calculations;185

• for odd n186

(12)

∫ 1

0

z2Pn(z) dz =
(−1)n(n− 1/2)(2)

2(n+ 3)(−1/2)
,

we denote this quantity as P ∗2n+1 for future calculations;187



8

We will use the following expression and notation for the expected value of the process188

(St −m)189

E0(t, T ) := E
[
ST −m|Ft

]
=

∫ u

l

(ST −m) pT−t(St, ST ) dST

=

∫ u

l

(y −m) pT−t(x, y) dy

=

∫ u

l

(y −m)
( ∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(y − l)− 1

)
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

)
dy

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

∫ u

l

(y −m)Pn

(
2

∆
(y − l)− 1

)
dy

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t) ∆2

4

∫ 1

−1

zPn
(
z) dz

=
∆

4

∫ 1

−1

z dz +
3∆

4
P1

(
2

∆
(x− l)− 1

)
e−2(T−t)

∫ 1

−1

z2 dz

+
∞∑
n=2

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t) ∆2

4

∫ 1

−1

z Pn(z) dz︸ ︷︷ ︸
=0, due to Equation (7)

= (St −m)e−2(T−t),(13)

where we use a substitution z := 2
∆

(y − l)− 1.190

We will use the following expression and notation for the variance of the process (St −m)191

(which is of course the same as variance of St but it’s useful to have this notation for a192

future purposes)193

V0(t, T ) := Var
[
ST −m|Ft

]
= E

[
(ST −m)2|Ft

]
−
(
E
[
ST −m|Ft

])2

=

∫ u

l

(ST −m)2 pT−t(St, ST ) dST − (St −m)2e−4(T−t)

=

∫ u

l

(y −m)2 pT−t(x, y) dy − (St −m)2e−4(T−t)

=

∫ u

l

(y −m)2
( ∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(y − l)− 1

)
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

)
dy

− (St −m)2e−4(T−t)
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=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t) ∆3

8

∫ 1

−1

z2Pn
(
z) dz

=
∆2

8

∫ 1

−1

z2 dz +
3∆2

8
P1

(
2

∆
(x− l)− 1

)
e−2(T−t)

∫ 1

−1

z3 dz

+
5∆2

32
P2

(
2

∆
(x− l)− 1

)
e−6(T−t)

∫ 1

−1

z2P2(z) dz

+
∞∑
n=3

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t) ∆3

8

∫ 1

−1

z2 Pn(z) dz︸ ︷︷ ︸
=0, due to Equation (7)

− (St −m)2e−4(T−t)

=
∆2

12
+ e−6(T−t)

(
(St −m)2 − ∆2

12

)
− (St −m)2e−4(T−t)

= (St −m)2e−4(T−t)
(
e−2(T−t) − 1

)
+

∆2

12

(
1− e−6(T−t)

)
,(14)

where we also substitute z := 2
∆

(y − l) − 1. We will use the following expression and194

notation for the expected value of Pt195

(15) E1(t, T ) := E
[
PT |Ft

]
= exp

(
f(T ) +Xte

−α(T−t) +
σ2

4α
(1− e−2α(T−t))

)
.

We will use the following expression and notation for the variance of the process Pt196

V1(t, T ) := Var
[
PT |Ft

]
=

(
E
[
PT |Ft

])2(
exp

(σ2

2α

(
1− e−2α(T−t)))− 1

)
= E2

1(t, T )
(
e
σ2

2α

(
1−e−2α(T−t)

)
− 1
)
.(16)

In the next sections we start considering simple products such as forwards and options on197

the storage level. Subsequently, we continue with various payoffs linking the power price198

and the storage level processes together.199

3.2. Probability measure. Before we start with pricing, we need to clarify some points200

on a pricing measure. From mathematical finance theory we know that in a complete mar-201

ket a contingent claim’s price is the discounted expected value of the future payoff under202

the equivalent martingale measure Q different from a real-world pricing measure P.203

However, the energy-related markets are incomplete, since due to specific market charac-204

teristics many payoffs cannot be replicated by other trading financial instruments. In our205

case the ”spot price” is the storage level process which can be, for instance, considered as206

an index of current state reservoir level (hydro). Hence, we cannot think of Q being the207

martingale measure since the process St does not need to be a martingale under Q. Instead,208



10

we can take any measure Q equivalent to the real-world measure P, i.e. Q = P, and price209

derivatives respectively. So then this measure can be called as a pricing measure which is210

the probability measure that takes into account all the risk associated with maintaing the211

storage. In other words, we suppose that the process St is already under pricing measure212

Q = P.213

3.3. Simple financial products. Equipped with the Legendre series properties together214

with the expression for the transition probability density pt−t0(x, y) in Equation (6), we215

now study some fundamental financial products: futures and options on a reservoir level.216

Since the storage level St at time t is a random process, these financial instruments gamble217

that the current reservoir level St rise or fall above or below some level. They can also be218

used by the producer, retailer or market maker to hedge their risk when maintaining the219

storage or, for example, to speculate (since the power price can be quite volatile). The220

risks are various. Consider, for instance, the case when the power price is high and the221

water level is low. Then our producer and/or storage owner does not have a chance to222

produce and has a potential loss. Another case is when the power price is low and the223

water level is high, the producer and/or storage owner still bears the costs on maintaining224

the storage, but it is not profitable to produce power due to low power price level. Since225

the high power price volatility is a constant source of uncertainty and risk, the producer is226

willing to hedge against it, especially if she has the fixed price contracts.227

3.3.1. Forward on the reservoir level. Under some pricing measure Q = P we can due to228

Equation (13) write the futures price on the water (or gas) level with maturity T as229

F (t, T ) = E[ST |Ft]
= Ste

−2(T−t) +m(1− e−2(T−t)).(17)

We can also price futures on the average water level deviation over some period of time by230

considering231

F (t, T1, T2) =
1

T2 − T1

E
[ ∫ T2

T1

(Su −m) du|Ft
]

=
1

T2 − T1

∫ T2

T1

E
[
Su −m|Ft

]
du

=
1

T2 − T1

1

2
(St −m)

(
e−2(T1−t) − e−2(T2−t)

)
.(18)

3.3.2. European options on the reservoir level. Call or Put on the water (or gas) level in232

the reservoir.233

Let us start with a European call option and some strike K which can be interpreted as234

marginal cost for maintaining the reservoir (re-check validity of second equality)235

C(t, T ) = EQ[max{ST −K, 0}|Ft]
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= EQ[max{ST −K, 0}|St]

=

∫ u

K

(y −K)pT−t(x, y) dy

=

∫ u

K

(y −K)pT−t(x, y) dy

=

∫ u

K

(y −K)
( ∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(y − l)− 1

)
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

)
dy

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

∫ u

K

(y −K)Pn

(
2

∆
(y − l)− 1

)
dy

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(T−t)

∫ 1

K̃

∆

2

(∆

2
z + (m−K)

)
Pn(z) dz

=
1

∆

(∆2

4

1− K̃2

2
+

∆

2
(m−K)(1− K̃)

)
+

3

∆
P1

(
2

∆
(St − l)− 1

)
e−2(T−t)

(∆2

4

1− K̃3

3
+

∆

2
(m−K)

1− K̃2

2

)
+

∞∑
n=2

2n+ 1

∆
Pn

(
2

∆
(St − l)− 1

)
e−n(n+1)(T−t)

(∆2

4
P ∗n−2,n,n+2(K̃) +

∆

2
(m−K)P ∗n−1,n+1(K̃)

)
,(19)

where we made the replacements z := 2
∆

(y− l)−1 and K̃ := 2
∆

(K− l)−1. Expressions for236

P ∗n−1,n+1(x) and P ∗n−2,n,n+2(x) are given above in Equations (8) and (9) respectively.237

3.4. Hydro-Driven Power Plant. In this section we consider payoffs which can be used238

to construct the value of a hydro-driven power plant and study its properties in a similar239

manner as in Nazarova, Kiesel, Bannör, and Scherer (2013). In general, we consider a240

producer who wants to hedge against some unfavorable situations like too low a water241

level in the reservoir, and too low or high prices. Therefore, such a producer could be242

interested in an option with which she can hedge against both water levels and price, as243

low water does not necessarily lead to high prices, only if demand is very high at the same244

time. Our producer might have contracts that she needs to fulfill with fixed prices, and245

thereby is concerned with too high a price or too low a water level. But too low a water246

level and too low a price may be connected with above average temperatures, and then the247

producer does not risk that much since she does not need to retail much power anyway.248

Since simple financial products only consider the current level in the storage facility, it is249

not enough to hedge against various complex cases, for these one needs to have advanced250

financial products with complicated payoffs.251

3.4.1. Payoff 1. Consider a hydro-driven power plant and a payoff (its form is quite similar252

to quanto options studied in Benth, Lange, and Myklebust (2013)) that includes an average253

power price level M and average storage level m, namely254

(20) Ht(Pt, St, Ct) = max{Pt −M, 0} ×max{St −m, 0} − Ct.
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Since the hydro reservoir depends on the natural inflow and we cannot ”inject” any water,255

this payoff has the following interpretation:256

• Case 1: Pt > M (power prices are relatively high) and St > m (reservoir257

is full). This is the most favourable situation which results in a positive value258

that investor can have by releasing some water (difference between current St and259

average level m), producing power and selling it at the market.260

• Case 2: Pt > M (power prices are relatively high) and St < m (reservoir261

is relatively empty). This situation corresponds to the ”doing nothing” regime,262

i.e. we don’t have much water in the reservoir to produce power, though we may263

like to keep the production routine.264

Being at time t we find that265

Vt(Pt, St) = E
[ ∫ T

t

e−r(k,t) Hk(Pk, Sk, Ck) dk|Ft
]

=

∫ T

t

e−r(k,t)
(
E
[
Hk(Pk, Sk)|Ft

])
dk

=

∫ T

t

e−r(k,t)
(
E
[

max{Pk −M, 0} ×max{Sk −m, 0}|Ft
]
− Ck

)
dk

=

∫ T

t

e−r(k,t)
(
E
[

max{Pk −M, 0}|Ft
]︸ ︷︷ ︸

=:E3(t,k)

E
[

max{Sk −m, 0}|Ft
]︸ ︷︷ ︸

=:E2(t,k)

+ ρ1

√
Var(max{Pk −M, 0}|Ft)︸ ︷︷ ︸

=:V3(t,k)

Var(max{Sk −m, 0}|Ft)︸ ︷︷ ︸
=:V2(t,k)

− Ck
)

dk

=

∫ T

t

e−r(k,t)
(
E3(t, k) · E2(t, k) + ρ1 ·

√
V3(t, k) · V2(t, k)− Ck

)
dk,(21)

where ρ1 = corr(max{Pk −M, 0},max{Sk −m, 0}).266

Let us now compute the values E2, E3, V2 and V3. From Equation (3) the log price is Gauss-267

ian, i.e. for k > t we have that lnPk = (f(k)+Xk) ∼ N (f(k) +Xte
−α(k−t)︸ ︷︷ ︸

=:m1

, σ2(1− e−2α(k−t))/(2α)︸ ︷︷ ︸
=:m2

).268

So, we obtain269

E3(t, k) := E
[

max{Pk −M, 0}|Ft
]

= E
[

max{ef(k)+Xk −M, 0}|Ft
]

=

∫ ∞
lnM

(ey −M)φ(y, x, t) dy

= em1+
m2
2 Φ
(m1 +m2 − lnM

√
m2

)
−MΦ

(m1 − lnM
√
m2

)
= em1+

m2
2 Φ(d2)−MΦ(d1),
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where d1 := f(k)+Xte−α(k−t)−lnM√
σ2/(2α)(1−e−2α(k−t))

and d2 := d1 +
√
σ2/(2α)(1− e−2α(k−t)).270

Further, knowing the transition density function pt−t0(x, y) for the process St ∈ (l, u), we271

obtain272

E2(t, k) := E
[

max{Sk −m, 0}|Ft
]

=

∫ u

m

(y −m) pk−t(x, y) dy

=

∫ u

m

(y −m)
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
Pn

(
2

∆
(y − l)− 1

)
e−n(n+1)(k−t) dy

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(k−t)

∫ u

m

(y −m)Pn

(
2

∆
(y − l)− 1

)
dy

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(k−t) ∆2

4

∫ 1

0

zPn(z) dz

=
∆

8
+

∆

4
P1

(
2

∆
(x− l)− 1

)
e−2(k−t)

+
∞∑
n=2

(2n+ 1)∆

4
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(k−t) P ∗n−2,n,n+2(0)

=
∆

8
+

∆

4
P1

(
2

∆
(St − l)− 1

)
e−2(k−t)

+
∞∑
n=2

(2n+ 1)∆

4
Pn

(
2

∆
(St − l)− 1

)
e−n(n+1)(k−t) P ∗n−2,n,n+2(0),(22)

where the expression for P ∗n−2,n,n+2(0) is given in Equation (9). Now let us compute value273

V3274

V3(t, k) := Var(max{Pk −M, 0}|Ft)
= Var(max{ef(k)+Xk −M, 0}|Ft)

=

∫ ∞
lnM

(ey −M)2φ(y, x, t) dy −
(∫ ∞

lnM

(ey −M)φ(y, x, t) dy
)2

=

∫ ∞
lnM

e2yφ(y, x, t) dy

+ M
(
1−

∫ ∞
lnM

φ(y, x, t) dy
)(
M

∫ ∞
lnM

φ(y, x, t) dy − 2

∫ ∞
lnM

eyφ(y, x, t) dy
)

−
( ∫ ∞

lnM

eyφ(y, x, t) dy
)2

= e2(m1+m2)Φ
(m1 + 2m2 − lnM

√
m2

)
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+ MΦ
( lnM −m1√

m2

)(
MΦ

(m1 − lnM
√
m2

)
− 2em1+

m2
2 Φ
(m1 +m2 − lnM

√
m2

))
− e2m1+m2Φ2

(m1 +m2 − lnM
√
m2

)
= e2(m1+m2)Φ(d3) +MΦ(−d1)

(
MΦ(d1)− 2em1+

m2
2 Φ(d2)

)
− e2m1+m2Φ2(d2),(23)

where d1 and d2 are given above and d3 := d1 + 2
√
σ2/(2α)(1− e−2α(k−t)).275

And finally we compute value V2276

V2(t, k) := Var(max{Sk −m, 0}|Ft)

=

∫ u

m

(y −m)2pt−k(x, y) dy − E2
2(t, k)

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(k−t)

∫ u

m

(y −m)2Pn

(
2

∆
(y − l)− 1

)
dy − E2

2(t, k)

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(k−t) ∆3

8

∫ 1

0

z2Pn(z) dz − E2
2(t, k),

=
∞∑
n=0

(2n+ 1)∆2

8
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(k−t) {P ∗2n, P ∗2n+1} − E2

2(t, k),(24)

where P ∗2n and P ∗2n+1 are given in Equations (11) and (12) respectively.277

3.4.2. Payoff 2. Let us the modify the payoff above and introduce a payoff function that
has an extra term responsible for the power production rate

κ(St) =
1

2
+
St −m
u− l

=
St − l
u− l

,

(25) Ht(Pt, St, Ct) = max{Pt −M, 0} × κ(St)× St − Ct.

The difference to the previous payoff is that in this case we can produce at the rate κ which278

is greater than 50% if the St > m. There is the following interpretation for this payoff279

allowing for more flexibility in the production rate compared to the previous one:280

• Case 1: Pt > M (power prices are relatively high) and St > m (reservoir281

is full). This is the most favourable situation which results in a positive value that282

investor has by releasing some water, producing power at the rate κ(St) and selling283

it at the market.284

• Case 2: Pt > M (power prices are relatively high) and St < m (reservoir285

is relatively empty). This situation corresponds to the base regime, i.e. we don’t286

have much water in the reservoir to produce intensively, but since the prices are287

high we wouldn’t like to completely stop operating.288
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Being at time t we find that289

Vt(Pt, St, Ct) = E
[ ∫ T

t

e−r(k,t) Hk(Pk, Sk, Ct) dk|Ft
]

=

∫ T

t

e−r(k,t)
(
E
[
Hk(Pk, Sk)|Ft

])
dk

=

∫ T

t

e−r(k,t)
(
E
[

max{Pk −M, 0} × κ(Sk)× Sk|Ft
]
− Ck

)
dk

=

∫ T

t

e−r(k,t)
(
E
[

max{Pk −M, 0} × Sk(Sk − l)
u− l

∣∣Ft]− Ck) dk

=

∫ T

t

e−r(k,t)
(
E
[

max{Pk −M, 0}|Ft
]︸ ︷︷ ︸

=:E3(t,k)

E
[Sk(Sk − l)

u− l
∣∣Ft]︸ ︷︷ ︸

=:E4(t,k)

+ ρ2

√√√√√Var(max{Pk −M, 0}|Ft)︸ ︷︷ ︸
=:V3(t,k)

Var
(Sk(Sk − l)

u− l
∣∣Ft)︸ ︷︷ ︸

=:V4(t,k)

− Ck
)

dk

=

∫ T

t

e−r(k,t)
(
E3(t, k) · E4(t, k) + ρ2 ·

√
V3(t, k) · V4(t, k)− Ck

)
dk,(26)

where ρ2 = corr(max{Pk −M, 0}, Sk(Sk−l)
u−l ).290

From above we know the values E3 and V3. Let us compute the values E4 and V4. We291

start with292

E4(t, k) := E
[Sk(Sk − l)

u− l
∣∣Ft]

=
1

∆
E
[
S2
k |Ft

]
− l

∆
E
[
Sk|Ft

]
=

1

∆
E
[
(Sk −m)2|Ft

]
+
u

∆
E
[
Sk −m|Ft

]
+
m

2

=
1

∆

∫ u

l

(Sk −m)2pk−t(St, Sk) dSk +
u

∆
E0 +

m

2

=
1

∆

∫ u

l

(y −m)2pk−t(x, y) dy +
u

∆
E0 +

m

2

=
1

∆

(∆2

12
+
(
(x−m)2 − ∆2

12

)
e−6(k−t)

)
+

4

∆
(x−m)e−2(k−t) +

m

2

=
((x−m)2

∆
− ∆

12

)
e−6(k−t) +

4

∆
(x−m)e−2(k−t) +

2u− l
6

=
((St −m)2

∆
− ∆

12

)
e−6(k−t) +

4

∆
(St −m)e−2(k−t) +

2u− l
6

.(27)
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Now we continue with V4293

V4(t, k) := Var
(Sk(Sk − l)

u− l
∣∣Ft)

=
1

∆2
V ar(S2

k − lSk
∣∣Ft)

=
1

∆2

∫ u

l

(S2
k − lSk)2pk−t(St, Sk) dSk − E2

4(t, k)

=
1

∆2

∫ u

l

y4 pk−t(x, y) dy − 2l

∆2

∫ u

l

y3 pk−t(x, y) dy +
l2

∆2

∫ u

l

y2 pk−t(x, y) dy − E2
4(t, k).(28)

The first three terms mainly involve the following expression for some a294

(29) y(a, n) :=

∫ u

l

yaPn

( 2

∆
(y − l)− 1

)
dy =

∆

2

∫ 1

−1

(∆

2
(z + 1) + l

)a
Pn(z) dz = 0,

when a < n. So we need to compute the following integrals to finish solving Equation295

(28)296

(30) y(2, 0) :=

∫ u

l

y2P0

( 2

∆
(y − l)− 1

)
dy =

u3 − l3

3
,

(31) y(2, 1) :=

∫ u

l

y2P1

( 2

∆
(y − l)− 1

)
dy =

(u− l)2

6
(u+ l),

(32) y(2, 2) :=

∫ u

l

y2P2

( 2

∆
(y − l)− 1

)
dy =

(u− l)3

30
,

(33) y(3, 0) :=

∫ u

l

y3P0

( 2

∆
(y − l)− 1

)
dy =

u4 − l4

4
,

(34) y(3, 1) :=

∫ u

l

y3P1

( 2

∆
(y − l)− 1

)
dy =

(u− l)2

20
(3u2 + 4lu+ 3l2),

(35) y(3, 2) :=

∫ u

l

y3P2

( 2

∆
(y − l)− 1

)
dy =

(u− l)3

20
(u+ l),

(36) y(3, 3) :=

∫ u

l

y3P3

( 2

∆
(y − l)− 1

)
dy =

(u− l)4

140
,
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(37) y(4, 0) :=

∫ u

l

y4P0

( 2

∆
(y − l)− 1

)
dy =

u5 − l5

5
,

(38) y(4, 1) :=

∫ u

l

y4P1

( 2

∆
(y − l)− 1

)
dy =

(u− l)2

15
(2u3 + 3lu2 + 3ul2 + 2l3),

(39) y(4, 2) :=

∫ u

l

y4P2

( 2

∆
(y − l)− 1

)
dy =

(u− l)3

35
(2u2 + 3lu+ 2l2),

(40) y(4, 3) :=

∫ u

l

y4P3

( 2

∆
(y − l)− 1

)
dy =

(u− l)4

70
(u+ l),

(41) y(4, 4) :=

∫ u

l

y4P4

( 2

∆
(y − l)− 1

)
dy =

(u− l)5

630
.

Let us now continue with Equation (28)297

V4 := Var
(Sk(Sk − l)

u− l
∣∣Ft)

=
1

∆2

∫ u

l

y4pk−t(x, y) dy − 2l

∆2

∫ u

l

y3pk−t(x, y) dy +
l2

∆2

∫ u

l

y2pk−t(x, y) dy − E2
4(t, k)

= C(4, k − t, x)
1

∆2
y(4, 4)

+ C(3, k − t, x)
( 1

∆2
y(4, 3)− 2l

∆2
y(3, 3)

)
+ C(2, k − t, x)

( 1

∆2
y(4, 2)− 2l

∆2
y(3, 2) +

l2

∆2
y(2, 2)

)
+ C(1, k − t, x)

( 1

∆2
y(4, 1)− 2l

∆2
y(3, 1) +

l2

∆2
y(2, 1)

)
+ C(0, k − t, x)

( 1

∆2
y(4, 0)− 2l

∆2
y(3, 0) +

l2

∆2
y(2, 0)

)
− E2

4(t, k)

=
1

∆2
×


C(4, k − t, x)

C(3, k − t, x)

C(2, k − t, x)

C(1, k − t, x)

C(0, k − t, x)



T

×


y(4, 4) 0 0

y(4, 3) y(3, 3) 0

y(4, 2) y(3, 2) y(2, 2)

y(4, 1) y(3, 1) y(2, 1)

y(4, 0) y(3, 0) y(2, 0)

×
 1

−2l

l2

− E2
4(t, k),(42)

where C(n, x, k − t) := 2n+1
∆

Pn

(
2
∆

(x− l)− 1
)
e−n(n+1)(k−t).298
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Figure 2. Pumped storage reservoir.

3.4.3. Payoff 3. Let us now consider the hydro power station with two reservoirs R1 and299

R2. The scheme of this pumped storage example is given in Figure 2. We make the300

following assumptions:301

• the inflow to R1 is random, since it depends on precipitation and thaw;302

• no other water inflow into the reservoirs is possible;303

• by injection water from R1 to R2 we produce power and by pumping water up304

from R2 to R1 we fill up R1 for our future production purposes when needed and305

possible;306

• it takes more energy to pump water up than to produce energy;307

• both reservoirs have the same capacity of (l, u);308

• our hydro-driven power plant contains water of one full reservoir capacity;309

Our assumptions yield that u− S1
t = S2

t − l. Then for some levels l < K1 ≤ m ≤ K2 < u310

in R1 and R2 we can construct the payoff311

Ht(Pt, S
1
t , S

2
t , Ct) = max{Pt −M+, 0}max{S1

t −K1, 0} −max{M− − Pt, 0}max{S2
t −K2, 0} − Ct
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= max{Pt −M+, 0}max{S1
t −K1, 0} −max{M− − Pt, 0}max{K1 − S1

t , 0} − Ct
= Ht(Pt, S

1
t , Ct)(43)

Since due to physical reasons we assume that pumping up needs more energy than produc-312

ing power, then there exists the so-called ∆P such that M− = M−∆P and M+ = M+∆P ,313

which yields that when Pt ∈ (M−,M+) it is not profitable to generate or to buy power.314

This ∆P can be computed via average price M and efficiency rates of pumping and gener-315

ating. The details are given in Connolly, Lund, Finn, Mathiesen, and Leahy (2011).316

This payoff has the following interpretation317

• Case 1: Pt > M+ (power prices are relatively high) and S1
t > K1 (reservoir318

R1 is relatively full which implies that reservoir R2 is relatively empty).319

This is the most favorable situation which results in a positive value that investor320

has by releasing some water into reservoir R2, producing power and selling it at the321

market.322

• Case 2: Pt > M+ (power prices are relatively high) and S1
t < K1 (reservoir323

R1 is relatively empty which implies that reservoir R2 is relatively full).324

This situation is quite unfavorable, since to produce power we first need to pump325

the water up from R2 to R1. We need to buy power to do so, but since the prices326

are high we don’t do anything.327

• Case 3: Pt < M− (power prices are relatively low) and S2
t > K2 (reservoir328

R1 is relatively empty which implies that reservoir R2 is relatively full).329

This is also a quite favorable situation for us, since we can buy power at a relatively330

low price and pump water immediately up to get the reservoir R1 full.331

• Case 4: Pt < M− (power prices are relatively high) and S2
t < K1 (reservoir332

R1 is relatively full which implies that reservoir R2 is relatively empty).333

Here we are not interested to buy power since despite the price level our reservoir334

R1 is already full and we don’t need to pump it up.335

Being at time t we find that336

Vt(Pt, S
1
t , S

2
t , Ct) = E

[ ∫ T

t

e−r(k,t) Hk(Pk, S
1
k , S

2
t , Ck) dk|Ft

]
=

∫ T

t

e−r(k,t)
(
E
[
Hk(Pk, S

1
k , S

2
k , Ck)|Ft

])
dk

=

∫ T

t

e−r(k,t)
(
E
[

max{Pk −M+, 0} ×max{S1
k −K1, 0}

− max{M− − Pk, 0} ×max{S2
k −K2, 0}|Ft

]
− Ck

)
dk

=

∫ T

t

e−r(k,t)
(
E
[

max{Pk −M+, 0} ×max{S1
k −K1, 0}

− max{M− − Pk, 0} ×max{K1 − S1
k , 0}|Ft

]
− Ck

)
dk
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=

∫ T

t

e−r(k,t)
(
E
[

max{Pk −M+, 0}|Ft
]︸ ︷︷ ︸

=:Ẽ3(t,k)

E
[

max{S1
k −K1, 0}|Ft

]︸ ︷︷ ︸
=:E8(t,k)

− E
[

max{M− − Pk, 0}|Ft
]︸ ︷︷ ︸

=:Ẽ5(t,k)

E
[

max{K1 − S1
k , 0}|Ft

]︸ ︷︷ ︸
=:E10(t,k)

+ ρ3

(√
Var(max{Pk −M+, 0}|Ft)︸ ︷︷ ︸

=:Ṽ3(t,k)

Var(max{S1
k −K1, 0}|Ft)︸ ︷︷ ︸

=:V8(t,k)

−
√√√√Var(max{M− − Pk, 0}|Ft)︸ ︷︷ ︸

=:Ṽ5(t,k)

Var(max{K1 − S1
k , 0}|Ft)

)
︸ ︷︷ ︸

=:V10(t,k)

− Ck
)

dk

=

∫ T

t

e−r(k,t)
(
Ẽ3(t, k) · E8(t, k)− Ẽ5(t, k) · E10(t, k)

+ ρ3

(√
Ṽ3(t, k) · V8(t, k)−

√
Ṽ5(t, k) · V10(t, k)

)
− Ck

)
, dk.(44)

where we assume ρ3 = corr(max{Pk − M+, 0},max{S1
k − K1, 0}) = corr(max{M− −337

Pk, 0},max{S2
k −K2, 0}).338

The expressions for Ẽ3 and Ṽ3 can be obtained from E3 and V3 given above by replacing339

M by M+. The same way the expressions for Ẽ5 and Ṽ5 can be obtained from E5 and V5340

given below by replacing M by M−. Now let us compute E8, E10, V8 and V10. We start341

with E8 which is analogous to (19)342

E8(t, k) := E
[

max{S1
k −K1, 0}|Ft

]
=

∫ u

K1

(y −K1)pt−k(y, x) dy

=
1

∆

(∆2

4

1− K̃2
1

2
+

∆

2
(m−K1)(1− K̃)

)
+

3

∆
P1

( 2

∆
(S1

t − l)− 1
)
e−2(T−t)

(∆2

4

1− K̃3
1

3
+

∆

2
(m−K1)

1− K̃2
1

2

)
+

∞∑
n=2

2n+ 1

∆
Pn

(
2

∆
(S1

t − l)− 1

)
e−n(n+1)(T−t)

(∆2

4
P ∗n−2,n,n+2(K̃1) +

∆

2
(m−K1)P ∗n−1,n+1(K̃)

)
,

(45)

where K̃1 := 2
∆

(K1 − l) − 1 and expressions for P ∗n−2,n,n+2(x) and P ∗n−1,n+1(x) are given343

above in Equations (9) and (8) respectively. Then344

E10(t, k) := E
[

max{S2
k −K2, 0}|Ft

]
= E

[
max{K1 − S1

k , 0}|Ft
]

= K1 +m− E0(t, k)− E8(t, k).(46)
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We continue with V8 and V10. When K1 = m the case is identical to V2(t, k), but here we345

assume that K1 is different from m, then346

V8(t, k) := Var
(

max{S1
k −K1, 0}|Ft

)
=

∫ u

K1

(y −K1)2pt−k(x, y) dy − E2
8(t, k)

=
∞∑
n=0

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(k−t)

∫ u

K1

(y −K1)2Pn

(
2

∆
(y − l)− 1

)
dy − E2

8(t, k),

(47)

now substituting z := 2
∆

(y − l)− 1 and K̃1 := 2
∆

(K1 − l)− 1 yields347

∫ u

K1

(y −K1)2Pn

(
2

∆
(y − l)− 1

)
dy =

∆

2

∫ 1

K̃1

(∆

2
z + (m−K1)

)2

Pn(z) dz

=
∆3

8

∫ 1

K̃1

z2Pn(z) dz +
∆2

2
(m−K1)

∫ 1

K̃1

zPn(z) dz

+
∆

2
(m−K1)2

∫ 1

K̃1

Pn(z) dz

=
∆3

8
P ∗n−3,n+3(K̃1) +

∆2

2
(m−K1)P ∗n−2,n,n+2(K̃1)

+
∆

2
(m−K1)2P ∗n−1,n+1(K̃1)(48)

where we used Equations (8), (9) and (10). Now we continue with solving Equation348

(47)349

V8(t, k) =
1

∆

(∆3

8

1− K̃3
1

3
+

∆2

2
(m−K1)

1− K̃2
1

2
+

∆

2
(m−K1)2(1− K̃1)

)
+

3

∆
P1

(
2

∆
(x− l)− 1

)
e−2(k−t)

(∆3

8

1− K̃4
1

4
+

∆2

2
(m−K1)

1− K̃3
1

3
+

∆

2
(m−K1)2 1− K̃2

1

2

)
+

5

∆
P2

(
2

∆
(x− l)− 1

)
e−6(k−t)

(∆3

8

−9K̃5
1 + 5K̃3

1 + 4

30
+

∆2

2
(m−K1)

−3K̃4
1 + 2K̃2

1 + 1

8

+
∆

2
(m−K1)2 K̃1 − K̃3

1

2

)
+

∞∑
n=3

2n+ 1

∆
Pn

(
2

∆
(x− l)− 1

)
e−n(n+1)(k−t)

(∆3

8
P ∗n−3,n+3(K̃1) +

∆2

2
(m−K1)P ∗n−2,n,n+2(K̃1)

+
∆

2
(m−K1)2P ∗n−1,n+1(K̃1)

)
− E2

8(t, k).

(49)
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Now the last element is V10350

V10(t, k) := Var
(

max{K1 − S1
k , 0}|Ft

)
=

∫ K1

l

(K1 − y)2pt−k(x, y) dy − E2
10(t, k)

=

∫ u

l

(K1 − y)2pt−k(x, y) dy −
∫ u

K1

(K1 − y)2pt−k(x, y) dy − E2
10(t, k)

= V0(k, t) +
(
K1 +m− E0(k, t)

)2 − (V8(t, k) + E2
8(t, k))− E2

10(t, k).(50)

3.5. Gas-Driven Storage. In this section we consider one gas-storage-driven payoff which351

is similar to the payoffs studied above. Consider a storage owner who regularly sells or buys352

gas and respectively fills or empties the storage facility. Assume, that this is her stochastic353

optimal control policy and the decision to inject or withdraw is a result of the optimisation354

problem under some constraints. The power price and costs on the managing storage355

facility are the key drivers to find the optimal policy. If taking the costs as a deterministic356

function of time, one can think of this policy as solely dependent of the stochastic gas price.357

So we can further assume that the resulting storage level St is indirectly a function of the358

optimal stochastic control. In this sense we can consider a payoff that would be hedging359

the position of this storage owner in case of a low reservoir level and low prices.360

3.5.1. Payoff 4. In this section we investigate the case of the gas storage problem. We361

consider the so-called working gas facility and the power producer who can inject and362

withdraw the necessary amount of gas into the reservoir. We also have a deterministic cost363

function Ct364

(51)
Ht(Pt, St, Ct) = max{Pt−M, 0}×max{St−m, 0}−max{M−Pt, 0}×max{m−St, 0}−Ct,

where M is again the average gas price level and all the notations are as given above. This365

payoff has the following interpretation:366

• Case 1: Pt > M (gas prices are relatively high) and St > m (reservoir is367

full). This is the most favorable situation which results in a positive value that368

investor can have by withdrawing and selling the storable asset at the market.369

• Case 2: Pt > M (gas prices are relatively high) and St < m (reservoir is370

relatively empty). This situation corresponds to ”doing nothing” regime, since371

the prices are too high to buy and inject and the reservoir is too low to withdraw372

and sell. So, the value is negative due to the costs we have to pay.373

• Case 3: Pt < M (gas prices are relatively low) and St > m (reservoir is374

full). This situation also corresponds to ”doing nothing” regime, since prices are375

too low to withdraw and sell despite the fact that the reservoir is full. So, the value376

is negative due to the costs we have to pay.377
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• Case 4: Pt < M (gas prices are relatively low) and St < m (reservoir is378

relatively empty). This is an auspicious situation for an investor to buy and379

inject the storable asset, although the value is negative.380

Being at time t we find that381

Vt(Pt, St, Ct) = E
[ ∫ T

t

e−r(k,t) Hk(Pk, Sk, Ck) dk|Ft
]

=

∫ T

t

e−r(k,t)
(
E
[
Hk(Pk, Sk, Ck)|Ft

])
dk

=

∫ T

t

e−r(k,t)
(
E
[

max{Pk −M, 0} ×max{Sk −m, 0}

− max{M − Pk, 0} ×max{m− Sk, 0} − Ck|Ft
])

dk

=

∫ T

t

e−r(k,t)
(
E
[

max{Pk −M, 0}|Ft
]︸ ︷︷ ︸

=:E3(t,k)

E
[

max{Sk −m, 0}|Ft
]︸ ︷︷ ︸

=:E2(t,k)

− E
[

max{M − Pk, 0}|Ft
]︸ ︷︷ ︸

=:E5(t,k)

E
[

max{m− Sk, 0}|Ft
]︸ ︷︷ ︸

=:E6(t,k)

+ ρ4

(√
Var(max{Pk −M, 0}|Ft)︸ ︷︷ ︸

=:V3(t,k)

Var(max{Sk −m, 0}|Ft)︸ ︷︷ ︸
=:V2(t,k)

−
√√√√Var(max{M − Pk, 0}|Ft)︸ ︷︷ ︸

=:V5(t,k)

Var(max{m− Sk, 0}|Ft)
)

︸ ︷︷ ︸
=:V6(t,k)

− Ck
)

dk

=

∫ T

t

e−r(k,t)
(
E3(t, k) · E2(t, k)− E5(t, k) · E6(t, k)

+ ρ4

(√
V3(t, k) · V2(t, k)−

√
V5(t, k) · V6(t, k)

)
− Ck

)
dk,(52)

where we assume ρ4 = corr(max{Pk−M, 0},max{Sk−m, 0}) = corr(max{M−Pk, 0},max{Sk−382

m, 0}).383

We need to compute values E5, E6, V5 and V6. But this can be done easily since we know384

the values E2, E3, V2, and V3 from the previous sections. So we start with E5385

E5(t, k) := E
[

max{M − Pk, 0}|Ft
]

= E
[

max{M − ef(k)+Xk , 0}|Ft
]

=

∫ lnM

−∞
(M − ey)φ(y, x, t) dy

=

∫ +∞

−∞
(M − ey)φ(y, x, t) dy + E3
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= M − em1+
m2
2 + em1+

m2
2 Φ(d2)−MΦ(d1)

= MΦ(−d1) + em1+
m2
2 Φ(−d2),(53)

where d1 and d2 are given above and continue with V5 recalling that y := f(k) + Xk ∼386

N (m1,m2) with m1, m2 and d3 given above387

V5(t, k) := Var(max{M − Pk, 0}|Ft)
= Var(max{M − ef(k)+Xk , 0}|Ft)

=

∫ lnM

−∞
(M − ey)2φ(y, x, t) dy −

(∫ lnM

−∞
(M − ey)φ(y, x, t) dy

)2

=

∫ +∞

−∞
(M − ey)2φ(y, x, t) dy −

∫ +∞

lnM

(M − ey)2φ(y, x, t) dy − E2
5(t, k)

= Var(M − ey) + E2[M − ey]−
∫ +∞

lnM

(ey −M)2φ(y, x, t) dy − E2
5(t, k)

= Var(ey) + (M − E[ey])2 −
∫ +∞

lnM

(ey −M)2φ(y, x, t) dy − E2
5(t, k)

= (em2 − 1)e2m1+m2 +
(
M − em1+

m2
2

)2 − (V 3 + E2
3)− E2

5(t, k).(54)

Then we continue with E6388

E6(t, k) := E
[

max{m− Sk, 0}|Ft
]

=

∫ m

l

(m− y)pk−t(x, y) dy

= E2(t, k)− E0(t, k).(55)

We finally proceed with V6389

V6(t, k) := Var(max{m− Sk, 0}|Ft)

=

∫ m

l

(m− Sk)2p(Sk, k, St, t) dSk − E2
6(t, k)

=

∫ m

l

(m− y)2pk−t(x, y) dy − E2
6(t, k)

=

∫ u

l

(m− y)2pk−t(x, y) dy −
∫ u

m

(m− y)2pk−t(x, y) dy − E2
6(t, k)

= V0(t, k)− V2(t, k) + E2
0(t, k)− E2

2(t, k)− E2
6(t, k).(56)
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4. Numerical Examples390

4.1. Technical points. Since all the payoffs include elements with infinite sums, we need391

to clarify the choice for the number of terms in the sum. There are two issues here:392

convergence and computational time. The detailed discussion is given in ?.393

4.2. Hydro storage.394

4.2.1. Simple products. In section 3.3 we discussed fundamental financial products that395

can be used for hedging purposes in the storage industry. One can easily check that the396

formulas for the futures and options demand negligible computational effort.397

4.2.2. Hydro-Driven Storage: Payoffs 1, 2, 3. In this section we illustrate the hydro storage398

value problem described above by various payoffs. For some fixed parameters values we399

plot the payoff for a range of St and Pt. For all the examples we consider t = 0.5 and400

T = 5 in years. For the sake of simplicity we also fix the discount factor r(t, T ) and the401

costs of storage maintenance Ct. We take the following parameters values: l = 1, u = 51,402

m = 26, α = 1.5, σ = 0.2, M = 30, C = 0 and r = 0.03.403

To investigate the role of correlation parameters ρ1, ρ2 and ρ3, we study two cases: zero404

and negative correlation. Zero correlation implies that there is no any relationship between405

the power price level and the storage level. More precisely, when the inflow increases, the406

power price neither decreases nor increases. In the markets where different fossil fuels407

(coal, gas) dominate over hydro-driven power production, zero or negligible correlation408

can be exactly the case since there are many other power price drivers apart from the409

current reservoir level. However, in the markets with significant or even dominating share410

of hydro facilities we can fairly expect negative correlation. When the inflow increases and411

the so-called cumulative reservoir is getting full of water, the supply uncertainty decreases412

and all the market participants are aware of this. So since there is no lack of water in the413

reservoir, the power price decreases. We will find what is the impact of the correlation on414

the price of our financial instruments. So, this can be considered as a correlation sensitivity415

analysis.416

Figure 3 depicts the value associated with the payoff 1 as given in Equation (21) for various417

values of the correlation parameter ρ1. We observe that relatively high power prices and418

a full water reservoir yield the highest possible profit. We also observe that relatively low419

power price and an empty water reservoir yield the lowest possible profit. We further note420

that with negative correlation ρ1 = −0.9 producer’s profit decreases compared with ρ1 = 0.421

We interpret this gap as a premium that a producer has to pay for the market information422

about current reservoir level.423

Figure 4 depicts the value associated with the payoff 2 as given in Equation (26) for various424

values of the correlation parameter ρ2. We again observe that relatively high power prices425

and a full water reservoir yield the highest possible profit and that relatively low power426

price and an empty water reservoir yield the lowest possible profit. We also see the same427

negative correlation effect. The main difference here is that the profit of the payoff 2 is428

almost three times higher compared to the profit of the payoff 1. We reason this with the429



26

10

20

30

40

50

0
10

20
30

40
50

60
450

500

550

600

650

P
t

Storage value V
t
(P

t
, S

t
) of Payoff 1, ρ

1
 = 0.

S
t

(a)

10

20

30

40

50

0
10

20
30

40
50

60
300

350

400

450

P
t

Storage value V
t
(P

t
, S

t
) of Payoff 1, ρ

1
 = −0.9.

S
t

(b)

Figure 3. Storage value with payoff 1 with power price Pt and storage level
St. Parameters: l = 1, u = 51, m = 26, α = 1.5, σ = 0.2, M = 30, C = 0,
r = 0.03.

flexibility that offers the payoff 2: in a contrast to the payoff 1, the payoff 2 allows us to430

produce power even if the current reservoir level is less than m at some rate κ(St).431
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Figure 4. Storage value with payoff 2 with power price Pt and storage level
St. Parameters: l = 1, u = 51, m = 26, α = 1.5, σ = 0.2, M = 30, C = 0,
r = 0.03.

Figure 5 depicts the value associated with the payoff 3 as given in Equation (44) for432

various values of the correlation parameter ρ3 and parameter K1. We mainly observe two433

dependencies: the profit decrease when the correlation coefficient ρ3 and/or the coefficient434

K1 increases. The reasoning for the first case is the same as above: this can be regarded as435

an information premium for the producer. The explanation for the second case is intuitively436

clear: when the critical production level K1 at which we are allowed to produce is low,437

we have larger capacity to produce and benefit. When the critical production value K1 is438

high, we have much smaller capacity for power production. The value can even be negative439

and our producer has losses.440
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Figure 5. Storage value with payoff 3 with power price Pt and storage level
St. Parameters: l = 1, u = 51, m = 26, α = 1.5, σ = 0.2, M− = 25, M+ =
50, C = 0, r = 0.03.
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4.3. Gas storage.441

4.3.1. Gas-Driven Storage: Payoff 4. In this section we illustrate the gas storage value442

problem described by the payoff 4. For some fixed parameters values we plot the payoff443

for a range of St and Pt. For all the examples we consider t = 0.5 and T = 5 in years.444

For the sake of simplicity we also fix the discount factor r(t, T ) and the costs of storage445

maintenance Ct. We take the following parameters values: l = 1, u = 51, m = 26, α = 1.5,446

σ = 0.2, M = 30, C = 0 and r = 0.03.447

Here we also study two cases: zero and negative correlation coefficient ρ4. However, here448

we assume that in the markets where different fossil fuels (coal, gas) dominate over hydro-449

driven power production, negative correlation can be exactly the case, since the market is450

aware of the current supply level. In the markets with dominating share of hydro facilities451

we can fairly expect zero correlation, since the current gas storage level will not be critical452

for power production.453

Figure 6 depicts the value associated with the payoff 4 as given in Equation (52) for454

various values of the correlation parameter ρ4. This result is consistent with the hydro-455

storage case considered in the previous section. Particularly, when the gas price is high456

and the current storage level is also high, the storage owner withdraws, sells the gas in457

the market and obtains profit. If the gas price is relatively low and the storage facility is458

relatively empty, then the profit becomes smaller. We also notice the same effect with the459

correlation coefficient ρ4: the higher the correlation value, the smaller is our value.460
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Figure 6. Storage value with payoff 4 with gas price Pt and storage level
St. Parameters: l = 1, u = 51, m = 26, α = 1.5, σ = 0.2, M = 30, C = 0,
r = 0.03.

5. Discussion and outlook461

5.0.2. Hydro-Storage with time-dependent trend component and jump-diffusion process for462

power prices. Assumption about the power price being the mean-reverting diffusion process463

is quite simplifying and far away from realistic. So the natural steps towards reasonable464
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storage and power price modeling would be to include a time-dependent trend component465

m(t) and a jump component for the power price. Namely,466

(57) dSt = −2(St −m(t)) dt+
√

2(St − l)(u− St) dW S
t ,

where m(t) could be some trigonometric function capturing seasonal behavior of the storage467

level. And468

Pt = ef(t)+Xt ,

dXt = −αXt dt+ σ dWX
t ,

dPt = α
(
µ(t)− logPt

)
Pt dt+ σPt dWX

t + Jt dNt,(58)

where Nt is a compound Poisson process with some finite intensity λ. We can also consider469

various jump size distributions: Gaussian, exponential, Pareto, Laplace (for the motivation470

for this choice please see the details in Benth, Kiesel, and Nazarova (2012) and Bannör,471

Kiesel, Nazarova, and Scherer (2012)). Depending on this choice we either can directly472

compute the payoff value or we need to simulate the processes Pt and St to get the value of473

the virtual hydro-driven power plant (VHDPP) in the same manner as in Bannör, Kiesel,474

Nazarova, and Scherer (2012). Namely,475

(59) V HDPP (t, T ) =
1

N

N∑
i=1

V HDPPi(t, T ),

where476

(60) V HDPPi(t, T ) =

∫ T

t

e−r(s−t) payoffi(s) ds.

. . .477

6. Conclusion478

. . .479
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pus Essen, Universitätsstraße 12, 45141 Essen, Germany,512

E-mail address: Anna.Nazarova@uni-due.de513


